9. Qubitization: Block
encodings



Recap: Qubitization
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where @ = cos™!(a). Using qubitization, we can implement (upon measuring | 0))

lw)s = P(H) ),
(for a polynomial that satisfies the conditions in QSP.)




Qubitization: The gate sequence
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whereZ=7 Q1L and UH)=Z, Q@ H+X,®\1 - H.
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Cost =~ Cost of U(H) X Degree of the polynomial
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Unitary Encoding
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UH)=Z,H+X, ®V1-— H? is called as a unitary encoding of H .

1. U(H) is a unitary.
2. Alternatively, we can view it as a block-diagonal matrix:

UH) = (H )
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Unitary Encoding Revisited
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So far, we defined the unitary encoding of Htobe UH) =Z, @ H+ X, @ V1 — H?. However, this definition
is somewhat restrictive. For instance, this construcfiormdemahds U(H) fo'be exactly
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However, in actual application, we only use the top left corner of the matrix!

This motivates a more relaxed definition of unitary encoding, defined as

UH)|G),| Ay, = A|Gt>au>s +V1-2%|GH,e
where ((G |, ® IS) |G,)E = 0.
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1. The ancilla no longer has to be a single qubit. [
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2. We can simply avoid defining some of the matrix elements. k2| GLFe



A-subspace

This motivates a more relaxed definition of unitary encoding, defined as

UH)|G), | 2),=21G),14),+ V1 zzlG%,
where ((G|_ ®I)|G/1)l = 0.

Unfortunately, this definition seems to have a problem. Upon apflylng U(H) twice, we
may leave the subspace spanned by |G§) = | G) |/1) and | G; ) You apply it three

times, and potentially more trouble will Be' w
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To avoid this problem, we need a unitary W(H) such that

W(H)|G> | ), —A|G> |2),+ V1 ﬂzlG%,

where (G| & I } = (. Moreover, we need W(H) to preserve the subspace
spanned by |G,1) = |G) |/1) and |Gl)

ke
By unitarity, it suffices to show that W(H) reduces to a 2 X 2 unitary on that subspace
(for each A). Moreover, while not too important, it will be convenient to make this
unitary similar to the R(A) discussed last time.
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Matrix elements

Let’s recall our toy version of qubitization: ei%ZU(H)ei(ﬁiZ- . U(H)ei"ﬁéz,

whereZ=7 Q1L and UH)=Z, Q@ H+X,®\1 - H.
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In the A-subspace, we get a 2 X 2 matrix R(4) =
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Matrix elements -
§ (WiH)->1)1 6

V)
=z
N\

LGl WEH) | 62 =Wf§~(<4n\wcnj°m> —2 <CwJW0f)JGD>

(G| WH)|Gy)= 7
(G} |W(H) | G,)="1m

(GLW(ED|Gy)=" = i (<olwof1er = 97)
G| W(H)|G;H)="1 :
@ - 75 e

= - lj—) l Cm>
G | Win o= 1. G win-)1 V@ [V@ ~—

~ < On 7
$=0 , 4 Go| W) |6m>=] =L (<Ga,]wcw)1c;ﬂ> 4+ <6 ]wcH)l&:
= . <6V\] Gm>>) - <G\7\\ W (H) ] GV\W >

=i (O1F ]~>><T;1:7Wg' 27 )
DN ~ 2| Wi
= (‘) <

= e



Key conditions
Wi |6 = A&+ VR 1677

(GIWEH)|G) =2
<G,1| W(H)2 | G,1> =1




Let’s recall what we did last time...

UH) =Z,@H+X,®V1—-H
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This is just one viable example of W(H) . But now we can play with other possibilities!
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But we are sztill not done yet, because we need to figure out how to ensure
(G, |WH)"|G) = 1.
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A Trick

We can simply add one more qubit and replace the U(H) by controlled-U(H) and its
inverse, to implement W(H).
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Qubitization: Block-encoding framework
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No longer a single-qubit operator. Problem?

No! We are always living in the A-subspace, in which | G;) = | G),| 1) and |Gj)
forms a “qubit.” By afplying Z (¢)suchthat Z ()| G), = e | G), and

ZP |G, =1GY), T —

(for a fixed 1), we can implement the desired operation.




Side remark

2o 30 39 O

Let’s talk about the implementation of Z (¢) such that Z ( G) =G
Za(¢) | Gl>a = | Gl>a' a a @) | >a | >a and
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Qubitization: Block-encoding framework
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Cost =~ Cost of W(H) X Degree of the polynomial

Cost of W(H) ~ 2 X Cost of controlled-U(H)
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